

 Best STL
� Courses never cancelled: guaranteed

� Last minute rescheduling

� 12 months access to Microsoft trainers

� 12+ months schedule

� UK wide delivery

www.microsofttraining.net

Excel VBA
Introduction-Intermediate

Microsoft Application Series

© Best STL 2009

www.microsofttraining.net
Tel: 020-8682-4973

E&OE

Best Training reserves the right to revise this publication and make changes from time to time in
its content without notice.

Your Best STL Learning Tools

Welcome to your Best STL training course.

As part of your training, we provide you with the following tools and resources to support and
enhance your learning experience.

Thank you for choosing Best STL.

To guide you through your
training while you are on the
course.

Contains unit objectives,
exercises and space to
write notes.

In-course
handbook1 12 months

access to Microsoft
trainers

3

Available through online
support forum.

Need help? Our team of
Microsoft qualified trainers
are on hand to offer advice
and support.

Your delegate account
gives you access to:

• Reference material
• Course exercise files
• Advice & support forum
• Rewards programme
• Promotions & Newsletters

Delegate
account4

Hints and tips available
online from our Microsoft
qualified trainers for:

• All MS Office applications
• VBA
• MS Project
• MS Visio
+ more

Trainer hints
and tips5

Save on further training
courses you book with
Promotions.

• 30% off list price
(time limited)

• £50 off list price
(blue card discount)

Save with
Promotions6

Reference
material

Available online through
your delegate account.

Comprehensive reference
material with 100+ pages,
containing step-by-step
instructions.

2

Contents

Unit 1 The VBA Environment 1

Introducing Visual Basic for Applications 1
Recording and Running Macros 3
Using the Visual Basic Toolbar 6
Editing Macros in Visual Basic Editor 7
Understanding the Development Environment 8
Protect/Lock Excel VBA Code 9
Using Help 10
Closing the Visual Basic Editor 10

Unit 2 Developing with Procedures and Functions 11

Understanding and Creating Modules 11
Defining Procedures 12
Naming Procedures 12
Creating a Sub-Procedure 13
Creating a Function Procedure 15
Calling Procedures 16
Using the Immediate Window to Call Procedures 17
Working Using the Code Editor 18

Unit 3 Understanding Objects 21

Defining Objects 21
Examining the Excel Object Hierarchy 22
Defining Collections 24
Using the Object Browser 25
Working with Properties 27
The With Statement 27
Working With Methods 28
Event Procedures 29

Unit 4 Using Intrinsic Functions, Variables and Exp ressions 30

Defining Expressions And Statements 30
How to Declare Variables 32
Determining Data Types 34
Programming with Variable Scope 37
Harnessing Intrinsic Functions 39
Defining Constants and Using Intrinsic Constants 39
Adding Message Boxes 41
Using Input Boxes 45
How to Declare and Use Object Variables 46

Unit 5 Debugging the Code 47

Understanding Errors 47
Using Debugging Tools 49
Identifying the Value of Expressions 50
Setting Breakpoints 50
How to Step Through Code 51
Working with Break Mode during Run Mode 52

Unit 6 Handling Errors 53

Defining VBA's Error Trapping Options 53
Capturing Errors with the On Error Statement 54
Determining the Err Object 55
Coding an Error-Handling Routine 56
Using Inline Error Handling 58

Unit 7 Managing Program Execution 59

Defining Control-Of-Flow structures 59
Using Boolean Expressions 59
Using the If...End If Decision Structures 61
Using the Select Case...End Select Structure 63
Using the Do...Loop Structure 65
Using The For...Next Structure 66
Using the For Each...Next Structure 66
Guidelines for Use Of Control-Of-Flow Structures 67

Unit 8 Harnessing Forms And Controls 68

Defining UserForms 68
Utilising the Toolbox 69
Using UserForm Properties, Events And Methods 70
Understanding Controls 72
Setting Control Properties in the Properties Window 74
Using the Label Control 75
Using the Text Box Control 75
Using the Command Button Control 76
Using the Combo Box Control 76
Using the Frame Control 77
Using Option Button Controls 77
Using Control Appearance 77
Setting the Tab Order 78
Filling a Control 79
Adding Code to Controls 79
How to Launch a Form in Code 79

Unit 9 Using the PivotTable Object 80

Understanding PivotTables 80
Creating A PivotTable 80
Using the PivotTable Wizard Method 81
Using PivotFields 82

Excel VBA – Quick Reference Guide 84

www.microsofttraining.net Tel: 0208 682 4973 Page 1
© Best STL 2009

Unit 1 The VBA Environment

Introducing Visual Basic for Applications

Visual Basic for Applications or VBA is a development environment built into the
Microsoft Office Suite of products.

VBA is an Object Oriented Programming (OOP) language. It works by
manipulating objects. In Microsoft Office the programs are objects. In Excel
worksheets, charts and dialog boxes are also objects.

In VBA the object is written first

I’m fixing the Yellow House = .House.Yellow.Fix

 House Yellow Fix
English .noun .adjective .verb

VBA .object .property .method

When working in VBA tell Excel exactly what to do. Don’t assume anything.

Some General tips
Do not hesitate to use the macro recorder to avoid typos in your code.

Write your code in lower case letters. If the spelling is RIGHT, the Visual Basic
Editor will capitalize the necessary letters. If it doesn't.... check your spelling.

All VBA sentences must be on a single line. When you need to write long
sentences of code and you want to force a line break to make it easier to read
you must add a space and an underscore at the end of each line and then press
Return. Here is an example of a single sentence broken into 3 lines:

Range("A1:E9").Sort Key:=Range("C2"), Order1:=xlAsc ending, _
MatchCase:=False, Orientation:=xlTopToBottom, _
DataOption1:=xlSortTextAsNumbers

www.microsofttraining.net Tel: 0208 682 4973 Page 2
© Best STL 2009

Flickering Screen
Running a macro or VBA code may cause the screen to flicker as the monitor is
the slowest part of the program and cannot keep up with the very fast changes
taking place. To switch off the screen until the program is run enter the
following code line:

Application.ScreenUpdating = False
Screen comes on automatically on completion of the program.

CutCopyMode
After each Copy/Paste operation, you should empty the clipboard with the
following line of code to make sure that the computer memory doesn't overload:
ActiveSheet.Paste
Application.CutCopyMode = False

DisplayAlerts
If you don't want Excel to ask you things like "Do you want to delete this file..."
you can use the following line of code at the beginning of the relevant VBA
procedure.
Application.DisplayAlerts = False
Then at the end make sure you use the following code to reactivate Display
Alerts.
Application.DisplayAlerts = True

Compare Text
If you try to compare two strings in VBA the system compares the Binary
information of the strings so that
 “ My Name” Is Not Equal To “my name”.

To make the computer compare the words in the string, rather than the Binary
you need to enter the code:
Option Compare Text
In the Declarations area of the module

Quit
The following line of code closes Excel altogether.
Application.Quit

www.microsofttraining.net Tel: 0208 682 4973 Page 3
© Best STL 2009

Recording and Running Macros

A macro is a series of commands in Visual Basic, also known as a Sub
Procedure. Macros allow you to automate tedious or complicated tasks,
particularly those that are prone to error.

You can record a sequence of commands and replay the actions by running the
macro. Examining the code of a recorded macro can give you insight into how
Visual Basic works.

Macros can be stored on the current worksheet or made available globally by
saving them in the Personal.xls workbook. This is a hidden workbook that
automatically opens when you open Excel.

Recording a Macro

• Open the Tools menu

• Select Macro

• Choose Record New

Macro .

The Record Macro dialog box appears.

• Type the macro’s name in the Macro
name box (cannot contain spaces)

• Select where the macro is to be

stored

• Add a shortcut key, if desired

• Type a description, if desired (this

will appear in the VB editor as
commented code)

• Click OK.

Perform the actions to be recorded.

www.microsofttraining.net Tel: 0208 682 4973 Page 4
© Best STL 2009

To end the recording

• Click the Stop Recording button.

Running a Macro
A macro can be run by using a keystroke combination, a menu, a toolbar or the
Macro dialog box. This provides a list of all available macros in the open
workbooks. To open this:

• Open the Tools menu
• Select Macro
• Choose Macros .

The Macro dialog box appears.

• Select the desired macro

from the Macro Name list

• Click Run .

Macros without a workbook name in front indicate that they belong to the active
workbook.

Click the Step Into button in the Macro dialog box to run the macro one line at a
time. Once the VB editor displays, press F8.

Keep pressing F8 to step through the code. Display both the Excel and VB
Editor windows in order to see the results of the code execution.

www.microsofttraining.net Tel: 0208 682 4973 Page 5
© Best STL 2009

Adding a Macro/Procedure to a Custom Toolbar
Macros and Sub Procedures can be executed from the Macro dialog box and
from within other procedures. You can also execute procedures from toolbars
and menus.

To assign a procedure to a custom toolbar:
• Open Tools menu OR
• Right–click in the toolbars area

• Select Customize .

The Toolbars dialog box appears.

• Click the Toolbars tab

• Click New

• Name the new toolbar

• Click OK.

A new toolbar appears ready for buttons to be added. To do this:

• Click the Commands tab

• Select Macros from the

Categories list.

• Drag the custom Button icon

onto the new toolbar

• Click Modify Selection

• Click Assign Macro

• Select the required macro and

click OK

• Click Close .

www.microsofttraining.net Tel: 0208 682 4973 Page 6
© Best STL 2009

Using the Visual Basic Toolbar

As an alternative to this you can use the Visual Basic Toolbar to record and
manage macros. To do this:

• Open the View Menu

• Select Toolbars

• Choose Visual Basic .

The Visual basic toolbar appears.

The most used buttons are described below:

Run a Macro. A list of available macros appears

Record a Macro. The Record Macro toolbar appears

Opens the Security dialog box allowing the user to set security levels.

Open the Visual Basic Editor.

Open the Control Toolbox to access a variety of Form Controls

Switch design mode On and Off

www.microsofttraining.net Tel: 0208 682 4973 Page 7
© Best STL 2009

Editing Macros in Visual Basic Editor

When you record a macro, the recorded instructions are inserted into a
Procedure whose beginning and end are denoted with the key words Sub and
End Sub . This is stored within a Module. A module can contain many
procedures.

Code generated when a macro is recorded can be modified to provide a more
customised function. To do this:

• Open the Tools menu
• Select Macro
• Choose Macros
• Select the desired macro from the Macro Name list
• Click Run .

The Visual Basic Editor appears.

• Make the desired changes
• Save the macro
• Close the Visual Basic Editor window.

Important Note
You can usually figure out how to code any action in Excel by recording it in a
macro and viewing the resulting macro code.

www.microsofttraining.net Tel: 0208 682 4973 Page 8
© Best STL 2009

Understanding the Development Environment

Title bar, Menu bar
and Standard
toolbar

The centre of the Visual basic environment. The
menu bar and toolbar can be hidden of customized.
Closing this window closes the program.

Project Explorer Provides an organized view of the files and
components belonging to the project.
If hidden the Project Explorer can be displayed by
pressing Ctrl + R

Properties Window Provides a way to change attributes of forms and
controls (e.g. name, colour, etc). If hidden press F4
to display.

Code Window Used to edit the Visual basic code. Press F7 and it
will open an object selected in Project Explorer.
Close the window with the Close button that
appears on the menu bar.

Properties
Window

Project
Explorer

Code
window

Close
button

www.microsofttraining.net Tel: 0208 682 4973 Page 9
© Best STL 2009

Protect/Lock Excel VBA Code

When we write VBA code it is often desirable to have the VBA Macro code not
visible to end-users. This is to protect your intellectual property and/or stop
users messing about with your code.

To protect your code, from within the Visual Basic Editor

• Open the Tools Menu

• Select VBA Project Properties

The Project Properties dialog box
appears.

• Click the Protection page tab

• Check "Lock project for

viewing "

• Enter your password and again

to confirm it.

• Click OK

After doing this you must Save and Close the Workbook for the protection to
take effect.

The safest password to use is one that uses a combination of upper, lower case
text and numbers. Be sure not to forget it.

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 10
© Best STL 2009

Using Help

If the Visual Basic Help files are installed, by pressing F1, a help screen
displays explaining the feature that is currently active:

Alternatively use the Ask a Question box on the menu bar to as a quick way to
find help on a topic.

Closing the Visual Basic Editor

To close the Visual Basic Editor use one of the following:

• Open the File menu; select
Close and Return to Microsoft
Excel

OR

• Press Alt + Q

OR

• Click Close in the title bar.

www.microsofttraining.net Tel: 0208 682 4973 Page 11
© Best STL 2009

Unit 2 Developing with Procedures and Functions
Procedure is a term that refers to a unit of code created to perform a specific
task. In Excel, procedures are stored in objects called Modules .

In this unit we will look at both Modules and Procedures.

Understanding and Creating Modules

Standard modules can be used to store procedures that are available to all
forms, worksheets and other modules. These procedures are usually generic
and can be called by another procedure while the workbook is open.

Within a project you can create as many standard modules as required. You
should store related procedures together within the same module.

Standard modules are also used to declare global variables and constants. To
create a standard module in the VB Editor:

• Open the Insert menu

• Select Module .

A new Module appears:

• Display the Properties window if necessary
• In the Properties window change the name of the module

New
Module

Rename
Module

www.microsofttraining.net Tel: 0208 682 4973 Page 12
© Best STL 2009

Defining Procedures

A procedure is a named set of instructions that does something within the
application.

To execute the code in a procedure you refer to it by name from within another
procedure. This is known as Calling a procedure. When a procedure has
finished executing it returns control to the procedure from which it was called.

There are two general types of procedures:

Sub procedures perform a task and return control to the calling
procedure

Function procedures perform a task and return a value, as well as
control, to the calling procedure

If you require 10 stages to solve a problem write 10 sub procedures. It is easier
to find errors in smaller procedures than in a large one.

The procedures can then be called, in order, from another procedure.

Naming Procedures

There are rules and conventions that must be followed when naming
procedures in Visual Basic.

While rules must be followed or an error will result, conventions are there as a
guideline to make your code easier to follow and understand.

The following rules must be adhered to when naming procedures:

• Maximum length of the name is 255 characters

• The first character must be a letter

• Must be unique within a given module

• Cannot contain spaces or any of the following characters: . , @ & $ # ()

!

www.microsofttraining.net Tel: 0208 682 4973 Page 13
© Best STL 2009

You should consider these naming conventions when naming procedures:

• As procedures carry out actions, begin names with a verb

• Use the proper case for the word within the procedure name

• If procedures are related try and place the words that vary at the end of the

name

Following these conventions, here is an example of procedure names:

PrintClientList

GetDateStart

GetDateFinish

Creating a Sub-Procedure

Most Excel tasks can be automated by creating procedures. This can be done
by either recording a macro or entering the code directly into the VB Editor’s
Code window.

Sub procedures have the following syntax:

[Public/Private] Sub ProcedureName ([argument list])

Statement block

End Sub

Public indicates procedure can be called from within other modules. It is the
default setting

Private indicates the procedure is only available to other procedures in the
same module.

The Sub…End Sub structure can be typed directly into the code window or
inserted using the Add Procedure dialog box.

To create a sub procedure:
• Create or display the module to contain the new sub procedure
• Click in the Code window
• Type in the Sub procedure using the relevant syntax

Type in the word Sub, followed by a space and the Procedure name
Press Enter and VB inserts the parenthesis after the name and the End Sub
line.

OR

• Use Add Procedure .

www.microsofttraining.net Tel: 0208 682 4973 Page 14
© Best STL 2009

To display the Add Procedure dialog box:

• Open the Insert menu

• Select Procedure .

The Add Procedure dialog box appears:

• Type the name of the procedure in the
Name text box

• Select Sub under Type , if necessary

• Make the desired selection under

Scope

• Click OK.

Below is an example of a basic sub procedure:

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 15
© Best STL 2009

Creating a Function Procedure

Function procedures are similar to built-in functions such as Sum(). They are
sometimes called user-defined function.

A function returns a value to the procedure that calls it. The value the function
generates is assigned to the name of the function.

Function procedures have the following syntax:

[Public/Private] Function FunctionName ([argument l ist]) [As <Type>]

[Statement block]

[FunctionName = <expression>]

End Function

Public indicates procedure can be called from within other modules. It is the
default setting

Private indicates the procedure is only available to other procedures in the
same module.

The As clause sets the data type of the function’s return value.

To create a function procedure:
• Create or display the module to contain the new Function procedure
• Click in the Code window
• Type in the Function procedure using the relevant syntax or use Add

Procedure
Type in the word Function followed by a space and the Function name
Press Enter and VB places the parenthesis after the name and inserts the
End Function line.

Display the Add Procedure dialog box (as in Creating a Sub Procedure):
• Open the Insert menu
• Select Procedure .

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 16
© Best STL 2009

The Add Procedure dialog box appears (as seen in Creating a Sub
Procedure):
• Type the name of the procedure in the Name text box
• Select Function under Type
• Make the desired selection under Scope
• Click OK.

Below is an example of a basic function procedure:

Calling Procedures

A sub procedure or function is called from the point in another procedure where
you want the code to execute. The procedure being called must be accessible
to the calling procedure. This means it must be in the same module or be
declared public.

Below is an example of calls to Sub and Function procedures:

When passing multiple arguments (as in the function procedure above) always
separate them with commas and pass them in the same order as they are listed
in the syntax.

Auto Quick Info is a feature of the Visual Basic that displays a syntax box
when you type a procedure or function name.

The example below shows the tip for the Message Box function:

Arguments in square brackets are optional.

Values passed to procedures are sometimes referred to as parameters.

Notes

Function procedure

Sub procedure

www.microsofttraining.net Tel: 0208 682 4973 Page 17
© Best STL 2009

Using the Immediate Window to Call Procedures

The Immediate window is a debugging feature of Visual Basic. It can be used
to enter commands and evaluate expressions.

Code stored in a sub or function procedure can be executed by calling the
procedure from the Immediate window .

To open the Immediate window :

• Open the View menu

• Select Immediate window

OR

• Press Ctrl+G .

The Immediate window appears.

To execute a sub procedure:
• Type SubProcedureName ([Argument list])
• Press Enter .

To execute a function and print the return value in the window:
• Type ? FunctionName ([Argument list])
• Press Enter .

To evaluate an expression:
• Type ? Expression
• Press Enter .

Within the code, especially in loops, use the Debug.Print statement to display
values in the Immediate window while the code is executing. The Immediate
window must be open for this.

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 18
© Best STL 2009

Working Using the Code Editor

The Code editor window is used to edit Visual Basic code. The two drop down
lists can be used to display different procedures within a standard module or
objects’ event procedures within a class module.

Below is an illustration of the code window:

Object List

Displays a list of objects contained in the current module.

Procedure List Displays a list of general procedures in the current module
when General is selected in the Object list.
When an object is selected in the Object list it displays a list
of events associated with the object.

Notes

Procedure View:
Displays procedures
one at a time.

Procedure list Object list
Procedure
separator

Full Module View:
Displays all the procedures in
the module one after the other

www.microsofttraining.net Tel: 0208 682 4973 Page 19
© Best STL 2009

Setting Code Editor Options
The settings for the Code Editor can be changed. To do this:

• Open the Tools menu in the VB Editor

• Select Options .

The Options dialog box appears:

The following are explanations of the Code Setting selections:

Auto Syntax
Check

Automatically displays a Help message when a syntax error is
detected. Message appears when you move off the code line
containing the error

Require Variable
Declaration

Adds the line Option Explicit to all newly created modules,
requiring all variables to be explicitly declared before they are
used in a statement.

Auto List
Members

Displays a list box under your insertion point after you type an
identifiable object. The list shows all members of the object class.
An item selected from the list can be inserted into your code by
pressing the Tab key

Auto Quick Info Displays a syntax box showing a list of arguments when a
method, procedure or function name is typed

Auto Data Tips Displays the value of a variable when you point to it with a mouse
during break mode. Useful for debugging.

Auto Indent Indent the specified amount when Tab is pressed and indents all
subsequent lines at the same level.

www.microsofttraining.net Tel: 0208 682 4973 Page 20
© Best STL 2009

The Windows Settings selections are explained below:

Drag-and-Drop Text Editing Allows you to drag and drop code around the Code

window and into other windows like the Immediate
window.

Default to Full Module View Displays all module procedures in one list with
optional separator lines between each procedure.
The alternative is to show one procedure at a time,
as selected through the Procedure list.

Procedure Separator Displays a grey separator line between procedures if
Module view is selected

Editing Guidelines
Below are some useful guidelines to follow when editing code:
• If a statement is too long carry it over to the next line by typing a space and

underscore (_) character at the end of the line. This also works for
comments.

Strings that are continued require a closing quote, an ampersand (&), and a
space before the underscore. This is called Command Line Continuation .

• Indent text within control structures for readability. To do this:

• Select one or more lines
• Press the Tab key OR
• Press Shift + Tab to remove the indent.

• Complete statements by pressing Enter or by moving focus off the code line
by clicking somewhere else with the mouse or pressing an arrow key.

When focus is moved off the code line, the code formatter automatically
places key words in the proper case, adjusts spacing, adds punctuation and
standardizes variable capitalization.

It is also a good idea to comment your code to document what is happening in
your project. Good practice is to comment what is not obvious.

Start the line with an apostrophe (‘) or by typing the key word Rem (for
remark). When using an apostrophe to create a comment, you can place the
comment at the end of a line containing a code statement without causing a
syntax error.

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 21
© Best STL 2009

Unit 3 Understanding Objects
An object is an element of an application that can be accessed and manipulated
using Visual Basic. Examples of objects in Excel are worksheets, charts and
ranges.

Defining Objects

Objects are defined by lists of Properties , and Methods . Many also allow for
custom sub-procedures to be executed in response to Events .

The term Class refers to the general structure of an object. The class is a
template that defines the elements that all objects within that class share.

Properties
Properties are the characteristics of an object. The data values assigned to
properties describe a specific instance of an object.

A new workbook in Excel is an instance of a Workbook object, created by you,
based on the Workbook class. Properties that define an instance of a
Workbook object would include its name, path, password, etc.

Methods
Methods represent procedures that perform actions.

Printing a worksheet, saving a workbook selecting a range are all examples of
actions that can be executed using a method.

Events
Many objects can recognize and respond to events. For each event the object
recognizes you can write a sub procedure that will execute when the specific
event occurs.

A workbook recognizes the Open event. Code inserted into the Open event
procedure of the workbook will run whenever the workbook is opened.

Events may be initiated by users, other objects, or code statements. Many
objects are designed to respond to multiple events.

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 22
© Best STL 2009

Examining the Excel Object Hierarchy

The Excel Object Module is a set of objects that Excel exposes to the
development environment. Many objects are contained within other objects.
This indicates a hierarchy or parent-child relationship between the objects.

The Application object represents the application itself. All other objects are
below it and accessible through it. It is by referencing these objects, in code,
that we are able to control Excel.

Objects, their properties and methods are referred to in code using the “dot”
operator as illustrated below:

Application.ActiveWorkbook.SaveAs “Employees.xls”

Some objects in Excel are considered global. This means they are on top of the
hierarchy and can be referenced directly. The Workbook object is a child object
of the Excel Application object. But since the Workbook object is global you
don’t need to specify the Application object when referring to it.

Therefore the following statements are equal:

Application.ActiveWorkbook.SaveAs “Employees.xls

ActiveWorkbook.SaveAs “Employees.xls”

Some objects in the Excel Object model represent a Collection of objects. A
collection is a set of objects of the same type.

The Workbooks collection in Excel represents a set of all open workbooks. An
item in the collection can be referenced using an index number or its name.

To view the entire Excel Object model:

• Open the Help window
• Select the Contents tab
• Expand Programming Information
• Expand Microsoft Excel Visual basic Reference
• Select Microsoft Excel Object Model .

Parent Object Child Object Method of the Child Object Argument of the Method

www.microsofttraining.net Tel: 0208 682 4973 Page 23
© Best STL 2009

The following illustration shows a portion of the Excel object hierarchy. Most
projects will only use a fraction of the available objects.

www.microsofttraining.net Tel: 0208 682 4973 Page 24
© Best STL 2009

Defining Collections

A collection is a set of similar objects such as all open workbooks, all
worksheets in a workbook or all charts in a workbook.

Many Excel collections have the following properties:
Application Refers to the application that contains the collection

Count An integer value representing the number of items in the

collection.

Item Refers to a specific member of the collection identified by name
or position. Item is a method rather than a property

Parent Refers to the object containing the collection

Some collections provide methods similar to the following:
Add Allows you to add items to a collection

Delete Allows you to remove an item from the collection by identifying it

by name or position.

Referencing Objects in a Collection
A large part of programming is referencing the desired object, and then
manipulating the object by changing its properties or using its methods. To
reference an object you need to identify the collection in which it’s contained.

The following syntax references an object in a collection by using its position.
Since the Item property is the default property of a collection there is no need to
include it in the syntax.

CollectionName(Object Index Number)

Workbooks.Item(1)

Workbooks(1)

Charts(IntCount)

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 25
© Best STL 2009

The following syntax refers to an object by using the object name. Again the
Item property is not necessary:

CollectionName(ObjectName)

Workbooks(“Employees”)

Worksheets(“Purchases By Month”)

Sheets(“Total Sales”)

Charts(“Profits 2006”)

Using the Object Browser

The Object Browser is used to examine the hierarchy and contents of the
various classes and modules.

The Object Browser is often the best tool to use when you are searching for
information about an object such as:
• Does an object have a certain property, method or event
• What arguments are required by a given method
• Where does an object fit in the hierarchy

To access the Object Browser :
In the Visual Basic Editor , do one of the following:

• Open the View menu
• Select Object Browser OR

• Press F2 OR

• Click the Object Browser icon.

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 26
© Best STL 2009

The Object Browser dialog box appears.

The following icons and terms are used in the Object Browser :

Class Indicates a Class (Eg Workbook, Worksheet, Range, Cells)

Property Is a value representing an attribute of a class (Eg. Name,

Value)

Method Is a procedure that perform actions (Eg. Copy, Print Out,

Delete)

Event Indicates an event which the class generates (Eg Click,

Activate)

Constant Is a variable with a permanent value assigned to it (Eg

vbYes)

Enum Is a set of constants

Module Is a standard module

To search for an object in the Object Bowser :

• Type in the search criteria in the Search Text box
• Click

To close the Search pane:

• Click

Indicates the
library or project
for which objects
are displayed

Create a search
by typing search
criteria here

List of classes
and objects

The Details
section provides
descriptive
information for
the selected
class or member

List of the
members of
the selected
class or object.

www.microsofttraining.net Tel: 0208 682 4973 Page 27
© Best STL 2009

Working with Properties

Most objects in Excel have an associated set of properties. During execution,
code can read property values and in some cases, change them as well.

The syntax to read an object’s property is as follows:

ObjectReference.PropertyName

ActiveWorkbook.Name

The syntax to change an object’s property is as follows:

ObjectReference.PropertyName = expression

ActiveWorkbook.Name = “Quarterly Sales 2006”

The With Statement

The With statement can be used to work with several properties or methods
belonging to a single object without having to type the object reference on each
line.

The With statement helps optimize the code because too many “dots” in the
code slows down execution.

The syntax for the With statement is as follows:

With ObjectName

<Statement>
End With

With ActiveWorkbook
 .PrintOut
 .Save
 .Close
End With

You can nest With statements if needed.

Make sure that the code does not jump out of the With block before the End
With statement executes. This can lead to unexpected results.

www.microsofttraining.net Tel: 0208 682 4973 Page 28
© Best STL 2009

Working With Methods

Many Excel objects provide public Sub and Function procedures that are
callable from outside the object using references in your VB code. These
procedures are called methods , a term that describes actions an object can
perform.

Some methods require arguments that must be supplied when using the
method.

The syntax to invoke an object method is as follows:

ObjectReference.method [argument]

Workbooks.Open “Sales 2006”

Range(“A1:B20”).Select

Selection.Clear

When calling procedures or methods that have arguments you have two
choices of how to list the argument values to be sent.

Values can be passed by listing them in the same order as the argument list.
This is known as a Positional Argument .

Alternatively you can pass values by naming each argument together with the
value to pass. This is known as a Named Argument . When using this method
it is not necessary to match the argument order or insert commas as
placeholders in the list of optional arguments

The syntax for using named arguments is as follows:

Argumentname:= value

The example shows the PrintOut method and its syntax:

Sub PrintOut([From],[To],[Copies],[Preview],[Active Printer],[PrintToFile],[Collate],
[PrToFilename])

The statements below show both ways of passing values when calling the
PrintOut method. The first passes by Position , the second by Naming :

Workbooks(“Quarterly Sales 2006”).PrintOut (1,2,2, , , ,True)

Workbooks(“Quarterly Sales 2006”).PrintOut From:=1, To:=2, Copies:=2,
Collate:=True

www.microsofttraining.net Tel: 0208 682 4973 Page 29
© Best STL 2009

Event Procedures

An event procedure is a sub procedure created to run in response to an event
associated with an object. For example run a procedure when a workbook
opens.

Event procedure names are created automatically. They consist of the object,
followed by an underscore and the event name. These names cannot be
changed. Event procedures are stored in the class module associated with the
object for which they are written.

The syntax of the Activate Event procedure is as follows:

Private Sub Worksheet_Activate()

Creating An Event Procedure

To create an Event Procedure :

• Display the code

window for the
appropriate class
module

• Select the Object from
the Object drop-down
list

• Select the event from
the Procedure drop-
down list

• Enter the desired
code in the Event
Procedure

Notes

Object drop-down
list

Procedure drop-down
list shows all the events
for the selected object

www.microsofttraining.net Tel: 0208 682 4973 Page 30
© Best STL 2009

Unit 4 Using Intrinsic Functions, Variables and Exp ressions

Defining Expressions And Statements

Any programming language relies on its expressions and the statements that
put those expressions to use.

Expressions
An expression is a language element that, alone or in combination represents a
value.
The different expression types typical of Visual basic are as follows:
String Evaluates to a sequence of characters

Numeric Evaluates to anything that can be interpreted as a number

Date Evaluates to a date

Boolean Evaluates to True or False

Object Evaluates to an object reference

Expressions can be represented by any combination of the following language
elements:
Literal Is the actual value, explicitly stated.

Constant Represents a value that cannot be changed during

the execution of the program. (Eg. vbNo, vbCrLf)

Variable Represents a value that can be changed during the
execution of the program.

Function/Method
/Property

Performs a procedure and represents the resulting
value. This also includes self-defined functions

Operator Allows the combination of expression elements
+, - , * , / , >, <, =, <>

www.microsofttraining.net Tel: 0208 682 4973 Page 31
© Best STL 2009

Statements
A statement is a complete unit of execution that results in an action, declaration
or definition.

Statements are entered one per line and cannot span more than one line unless
the line continuation character (_) is used.

Statements combine the language’s key words with expressions to get things
done.

Below are some examples of statements:

ActiveWorksheet.Name = “Quarterly Sales 2006”

Label = ActiveCell.Value

CurrentPrice = CurrentPrice * 1.1

ActiveSheet.PasteSpecial Paste:= Values _
 Operation:= None

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 32
© Best STL 2009

How to Declare Variables

A variable is name used to represent a value. Variables are good at
representing values likely to change during the procedure. The variable name
identifies a unique location in memory where a value may be stored temporarily.

Variables are created by a Declaration statement. A variable declaration
establishes its name, scope, data type and lifetime.

The syntax for a Variable declaration is as follows:

Dim/Public/Private/Static VariableName [As <type>]

Dim EmpName as String

Private StdCounter as Integer

Public TodaysDate As Date

Naming Variables
To declare a variable you give it a name. Visual Basic associates the name
with a location in memory where the variable is stored.

Variable names have the following limitations:

• Must start with a letter

• Must NOT have spaces

• May include letters, numbers and underscore characters

• Must not exceed 255 characters in length

• Must not be a reserved word like True, Range, Selection

Assigning Values To Variables
An Assignment statement is used to set the value of a variable. The variable
name is placed to the left of the equal sign, while the right side of the statement
can be any expression that evaluates to the appropriate data type.

The syntax for a Variable declaration is as follows:

VariableName = expression

StdCounter = StdCounter + 1

SalesTotal = SalesTotal + ActiveCell.Value

www.microsofttraining.net Tel: 0208 682 4973 Page 33
© Best STL 2009

Declaring Variables Explicitly
VBA does not require you to explicitly declare your variables. If you don't
declare a variable using the Dim statement, VBA will automatically declare the
variable for you the first time you access the variable. While this may seem like
a nice feature, it has two major drawbacks:

• It doesn't ensure that you've spelled a variable name correctly
• It declares new variables as Variants , which are slow

Using Dim, Public, Private and Static declaration statements result in Explicit
variable declarations.

You can force VBA to require explicit declaration be placing the statement
Option Explicit at the very top of your code module, above any procedure
declaration.

With this statement in place, a Compiler Error - Variable Not Defined
message would appear when you attempt to run the code, and this makes it
clear that you have a problem. This way you can fix the problem immediately.

Although, this forces you to declare variables, there are many advantages. If
you have the wrong spelling for your variable, VBE will tell you. You are always
sure that your variables are considered by VBE.

The best thing to do is tell the VBA Editor to include this statement in every new
module. See Setting Code Editor Options on Page 21.

Important Note
When you declare more than one variable on a single line, each variable must
be given its own type declaration. The declaration for one variable does not
affect the type of any other variable. For example, the declaration:

Dim X, Y, Z As Single

is NOT the same as declaration

Dim X As Single, Y As Single, Z As Single

It IS the same as

Dim X As Variant, Y As Variant, Z As Single

For clarity, always declare each variable on a sepa rate line of code, each
with an explicit data type .

www.microsofttraining.net Tel: 0208 682 4973 Page 34
© Best STL 2009

Determining Data Types

When declaring a variable you can specify a data type.

The choice of data type will impact the programs accuracy, efficiency, memory
usage and its vulnerability to errors.

Data types determine the following:
• The structure and size of the memory storage unit that will hold the variable
• The kind and range of values the variable can contain. For example in the

Integer data type you cannot store other characters or fractions
• The operations that can be performed with the variable such as add or

subtract.

Important Info
If data type is omitted or the variable is not declared a generic type called
Variant is used as default.

Excessive use of the Variant data type makes the application slow because
Variants consume lots of memory and need greater value and type checks.

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 35
© Best STL 2009

Numeric Data Types
Numeric data types provide memory appropriate for storing and working on
numbers. You should select the smallest type that will hold the intended data
so as to speed up execution and conserve memory.

Numeric operations are performed according to the order of operator
precedence:

Operations inside parentheses () are performed first. Excel evaluates the
operators from left to right.

The following numeric operations are shown in order of precedence and can be
used in with numeric data types.

Exponentiation (^) Raises number to the power of the exponent

Negation (-) Indicates a negative operand (as in –1)

Divide and Multiply (/ *) Multiply and divide with floating point result

Modulus (Mod) Divides two numbers and returns the remainder

Add and Subtract (+ -) Adds and subtracts operands

String Data Types
The String data type is used to store one or more characters.

The following operands can be used with strings:

Concatenation (&) Combines two string operands. If an operand is
numeric it is first converted to a string-type Variant

Like LikePattern Provides pattern matching strings

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 36
© Best STL 2009

VBA supports the following data types:

Data type Storage size Range

Boolean 2 bytes True or False

Byte 1 byte integer 0 to 255

Integer 2 bytes -32,768 to 32,767

Long
(long integer)

4 byte integer -2,147,483,648 to 2,147,483,647

Single 4 byte floating point Approximate range -3.40 x 1038 to
3.40 x 1038

Double 8 byte floating point -1.79769313486231E308 to
-4.94065645841247E-324 for negative
values;

 4.94065645841247E-324 to
1.79769313486232E308 for positive
values

Currency 8 bytes fixed point -922,337,203,685,477.5808 to
922,337,203,685,477.5807

String
(variable-
length)

10 bytes + 0 to approximately 2 billion characters

String
(fixed-length)

Length of string 1 to approximately 65,400 characters

Variant
(Numeric)

16 bytes Any numeric value up to the range of
a Double

Variant (String) 22 bytes + Same range as for variable-length
String

Decimal 12 byte
(Only used within a
Variant)

28 places to the right of the decimal;
smallest non-zero number is
+/-
0.0000000000000000000000000001

Date 8 byte floating point 1 January 100 to 31 December 9999

Object 4 bytes An address reference to an Object

Important Info
For monetary values with up to 4 decimal places use the Currency data type.
Single and Double data types can be affected by small rounding errors.
A numeric variable of any type may be stored to a numeric variable of another
type. The fractional part of a Single or Double will be rounded off when stored
to an Integer type variable.

www.microsofttraining.net Tel: 0208 682 4973 Page 37
© Best STL 2009

Programming with Variable Scope

The keywords used to declare variables, Dim, Static, Public or Private, define
the scope of the variable. The scope of the variable determines which
procedures and modules can reference the variable.

Procedure-Level Variables
These are probably the best known and widely used variables. They are
declared (Dim or Static) inside the Procedure itself. Only the procedure that
contains the variable declaration can use it. As soon as the Procedure finishes,
the variable is destroyed.

Module-Level Variables
These are variables that are declared (Dim or Private) outside the Procedure
itself in the Declarations section of a module.

By default, variables declared with the Dim statement in the Declarations
section are scoped as private. However, by preceding the variable with the
Private keyword, the scope is obvious in your code.

All variables declared at this level are available to all Procedures within the
Module. Its value is retained unless the variable is referenced outside its scope,
the Workbook closes or the End Statement is used.

Public Variables
These variables are declared at the top of any standard Public module. Public
variables are available to all procedures in all modules in a project

The Public keyword can only be used in the Declarations section

Public procedures, variables, and constants defined in other than standard or
class modules, such as Form modules or Report modules , are not available
to referencing projects, because these modules are private to the project in
which they reside.

Variables are processed in the following order:

1. Local (Dim)

2. Module-Level (Private, Dim)

3. Public (Public)

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 38
© Best STL 2009

The diagram below illustrates how variables can be accessed across
procedures, modules and forms, based on the scope of each variable:

Each of the procedures can only see the variables as follows:

Procedure A can see: A1, A2, Mod1, X, Y

Procedure B can see: B1, Mod1, X, Y

Procedure C can see: C1, Frm1, X, Y

Procedure D can see: D1, D2, Frm2, X, Y

Notes

Module1

Public X
Private Mod1

Procedure A
Static A1
Dim A2

Procedure B
Dim B1

Form1

Public Y
Private Frm1

Form2

Private Frm2

Procedure D
Static D1
Dim D2

Procedure C
Dim C1

www.microsofttraining.net Tel: 0208 682 4973 Page 39
© Best STL 2009

Harnessing Intrinsic Functions

An intrinsic function is similar to a function procedure in that it performs a
specific task or calculation and returns a value. There are many intrinsic
functions that can be used to manipulate text strings, or dates, covert data or
perform calculations.

Intrinsic functions appear as methods in the Object Browser . To view and use
them:

• Select VBA from the

Project/Library drop down list.

• Select <globals> in the

Classes pane.

• Select the required intrinsic

function.

For further help on a particular function, display the Visual Basic Help window.
On the Contents tab:
• Expand Visual Basic Language Reference
• Expand Functions
• Expand the appropriate alphabet range
• Select the desired function.

Defining Constants and Using Intrinsic Constants

A constant is a variable that receives an initial data value that doesn’t change
during the programs execution. They are useful in situations where a value that
is hard to remember appears over and over. The use of constants can make
code more readable.

The value of the constant is also set in the declaration statement. Constants
are Private by default, unless the Public keyword is used.

The syntax of a Constant declaration is as follows:

[Public] [Private] Const ConstantName [<As type>] = <ConstantExpr >

Const conPassMark As String = “C”

Public Const conMaxSpeed As Integer = 30

www.microsofttraining.net Tel: 0208 682 4973 Page 40
© Best STL 2009

Using Intrinsic Constants
VBA has many built-in constants that can be used in expressions. VBA
constants begin with the letters vb while constants belonging to the Excel object
library begin with xl .

To access Intrinsic constants in the Object Browser follow the steps below:

• Select VBA from the

Project/Library drop down list.

• Select the object you want to

use in the Classes pane e.g.
vbMsgBoxResult .

• Select the required intrinsic

function e.g. vbOK

Some useful Visual Basic constants are listed below:

Constant Equivalent to: Same as pressing:

vbCr

Carriage Return

vbTab

Tab character

vbLf

Soft return and linefeed

+
vbCrLf Combination of carriage return

and linefeed

vbBack

Backspace character

vbNullString

Zero length string “”

For a full list of Visual Basic Constants, search Help for VB Constants while in
the Visual Basic Editor.

www.microsofttraining.net Tel: 0208 682 4973 Page 41
© Best STL 2009

Adding Message Boxes

The MsgBox Function can be used to display messages on the screen and
prompt for a user’s response.

The MsgBox Function can display a variety of buttons, icons and custom title
bar text.

The MsgBox Function can be used to return a constant value that represents
the button clicked by user.

The MsgBox Function syntax is as follows:

MsgBox(prompt[, buttons] [, title] [, helpfile, con text])

MyResponse = MsgBox (“Print the new sales report?”, 36, _
“Print Sales Report”)

MyResponse = MsgBox (“Print the new sales report?”, _
vbYesNo + vbQuestion, “Print Sales Report”)

Both MsgBox Functions above produce a message box with 2 buttons, a text
message, an icon and a title as shown below:

Another example of using the message box is to return a value:
Sub Example()
Dim X As Integer
X = 2
MsgBox "The Value of X is " & Str(X)
End Sub

The Msgbox message must be a string (text), hence the Str() function is
required to convert an integer to a string which is concatenated with the first
string using the & operator.

www.microsofttraining.net Tel: 0208 682 4973 Page 42
© Best STL 2009

The MsgBox Function has the components described below:

prompt Required. It is a string expression displayed as the message in the
dialog box. The maximum length of prompt is approximately 1024
characters. If prompt consists of more than one line, you can separate
the lines by concatenating and using carriage return code vbCrLf.

buttons Optional. Numeric expression that defines the set of command buttons
to display, the icon style to use, the identity of the default button, and
the modality of the message box. Can be specified by entering a
vbConstant, the actual numeric value of the constant or the sum of
constants. If omitted, the default value for buttons is 0

title Optional. String expression displayed in the title bar of the dialog box.
If you omit title “Microsoft Excel” is the default title

helpfile Optional. String expression that identifies the Help file to use for the
input box. If helpfile is provided, context must also be provided.

context Optional. Numeric expression that identifies the appropriate topic in the
Help file related to the message box

The values and constants for creating buttons are shown below:

Constant Value Description

vbOKOnly 0 OK button only (default)

vbOKCancel 1 OK and Cancel buttons

vbAbortRetryIgnore 2 Abort , Retry , and Ignore buttons

vbYesNoCancel 3 Yes, No, and Cancel buttons

vbYesNo 4 Yes and No buttons

vbRetryCancel 5 Retry and Cancel buttons

The values for creating icons are shown below:

Constant Value Description

vbCritical 16 Display the Stop icon

vbQuestion 32 Display the Question icon

vbExclamation 48 Display the Exclamation icon

vbInformation 64 Display the Information icon

www.microsofttraining.net Tel: 0208 682 4973 Page 43
© Best STL 2009

The values for setting the default command button are shown below:

Constant Value Description

vbDefaultButton1 0 First button set as default (default)

vbDefaultButton2 256 Second button set as default

vbDefaultButton3 512 Third button set as default

vbDefaultButton4 768 Fourth button set as default

The values for controlling the modality of the message box are shown below:

Constant Value Description

vbApplicationModal 0 Application modal message box
(default)

vbSystemModal 4096 System modal message box

vbMsgBoxHelpButton 16384 Adds Help button to the message
box

VbMsgBoxSetForeground 65536 Specifies the message box window
as the foreground window

To display the OK and Cancel buttons with the Stop icon and the second
button (Cancel) set as default, the argument would be:

273 (1 + 16 +256).

It is easier to sum the constants than writing the actual values themselves:

vbOKCancel, vbCritical, vbDefaultButton2 .

When adding numbers or combining constants, for the button argument, select
only one value , from each of the listed groups.

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 44
© Best STL 2009

Return Values
The MsgBox Function returns the value of the button that is clicked. Again
this can be referenced by the number or the corresponding constant.

The Return values of the corresponding constants are as follows:

Button Clicked Constant Value Returned

OK vbOK 1

Cancel vbCancel 2

Abort vbAbort 3

Retry vbRetry 4

Ignore vbIgnore 5

Yes vbYes 6

No vbNo 7

The return value is of no interest when the MsgBox only displays the OK button.

In this case just call the MsgBox Function with the syntax used to call a sub
procedure as shown below:

MsgBox (“You must enter a number”, vbOKOnly, “Atte ntion”)

Or

MsgBox “You must enter a number”

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 45
© Best STL 2009

Using Input Boxes

The InputBox Function prompts the user for a piece of information and returns
it as a string.

The syntax of a InputBox Function is as follows:

InputBox (prompt[, title] [, default] [, xpos] [, y pos] [, helpfile, context])

strEmpID = InputBox (“Please enter your Employee ID :”, “Employee ID
Entry”)

In the example the return value of the function is being stored in a variable
called strEmpID.

If OK is clicked, the function returns the contents of the text box or a zero-length
string, if nothing is entered.

If the user clicks Cancel , it returns a zero-length string, which may cause an
error in the procedure if a value is required.

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 46
© Best STL 2009

The ImputBox Function has the components described below:

prompt Required. String expression displayed in the dialog box. The
maximum length of prompt is approximately 1024 characters.

title Optional. String expression displayed in the title bar of the dialog
box. If you omit title “Microsoft Excel is the default title.

default Optional. String expression displayed in the text box as the default
response. If you omit default, the text box is displayed empty.

xpos Optional. Numeric expression that specifies, in twips , the
horizontal distance of the left edge of the dialog box from the left
edge of the screen. If xpos is omitted ypos must also be omitted.

ypos Optional. Numeric expression that specifies, in twips , the vertical
distance of the upper edge of the dialog box from the top of the
screen.

helpfile Optional. String expression that identifies the Help file to use for
the Input box. If helpfile is provided, context must also be
provided.

context Optional. Numeric expression that identifies the appropriate topic
in the Help file related to the Input box

A twip is equal to 1/20 th of a point.

How to Declare and Use Object Variables

You can also use variables to reference objects in order to work with their
properties, methods and events. Any Excel object such as Worksheet, Chart,
Range or Cell can be represented and accessed using a variable name.

The Object Variable syntax is as follows:

Dim/Public/Private/Static VariableName [As <Objec ttype>]

Dim SalesRange As Range

Public wsSheet As Worksheet

Assigning values to object variables requires the keyword Set:

Set VariableName = Objectname

Set SalesRange = ActiveSheet.Range(“A1:F12”)

Set wsSheet = Worksheet (“Sales 2006”)

Once an object is assigned to an object variable, the object can be referenced
by its variable name. Object variables are used to avoid typing lengthy object
references.

www.microsofttraining.net Tel: 0208 682 4973 Page 47
© Best STL 2009

Unit 5 Debugging the Code

Understanding Errors

When developing code, problems will always occur. Wrong use of functions,
overflow and division by zero are some of the things that will cause an error and
not produce the intended results.

Errors are called Bugs . The process of removing bugs is known as Debugging .
VBA provides tools to help see how the code is running.

There are three general types of errors:

Syntax Errors
Syntax errors occur when code is entered incorrectly and is typically discovered
by the line editor or the compiler.

• Discovered by Line Editor : When you move off a line of code in the Code

window, the syntax of the line is checked. If an error is detected the whole
line turns red by default indicating the line needs to be changed.

• Discovered by Compiler : While the line editor checks one line at a time,

the compiler checks all the lines in each procedure and all declarations
within the project. If Option Explicit is set, the compiler also checks that all
variables are declared and that all objects have references to the correct
methods, properties and events. The compiler also checks that all required
statements are present, for example that each If has an End If . When the
compiler finds an error it displays a message box describing the error.

Run-Time Errors
When a program is running and it encounters a line of code that it cannot be
executed, a run-time error is generated. These errors occur when a certain
condition exists. A condition could run fine 10 times but cause an error on the
11th. When a run-time error occurs, execution is halted a message box appears
defining the error.

Logic Errors
Logic errors create unexpected outcomes when a procedure is executed.
Unlike syntax or run-time errors the application is not halted and you are not
shown the offending line of code. These errors are more difficult to locate and
correct.

www.microsofttraining.net Tel: 0208 682 4973 Page 48
© Best STL 2009

Minimizing Errors
Here are a few suggestions to help you minimize or make it easier to find errors
in your code:

• Add comments to code explaining what a line of code or procedure is meant

to do. This is important if other people are going to look at the code.
• Create meaningful variable names. Use prefixes to identify data or object

type.
• Any time you use division that contains a variable in the denominator, test

the denominator to ensure that it doesn’t equal zero
• Force variable declarations with the use of Option Explicit . A simple

misspelling of a variable name will lead to a logic error, not a run-time error.
• Give procedures names that clearly describe what they do.
• Keep procedures as short as possible, giving it one or two specific tasks to

carry out.
• Test procedures with large data sets representing all possible permutations

of reasonable or unreasonable data. Make your procedure fail before
someone else does.

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 49
© Best STL 2009

Using Debugging Tools

VBA’s debugging tools are useful for checking and understanding the cause of
logic and run-time errors in the code.

The toolbar buttons as they appear left to right are explained below:

Design Mode

Turns design mode off and on.

Run / Continue

Runs code or resumes after a code break

Break

Stops the execution of a program while it's running and
switches to Break Mode.

Reset

Clears the execution stack and module level variables and
resets the project.

Toggle Breakpoint Sets or removes a Break Point at the current line.

Step Into

Executes code one statement at a time.

Step Over

Allows selected ode to be stepped over during execution.

Step Out

Executes the remaining lines of a procedure after a break

Locals Window

Displays the value of variables and properties during code
execution

Immediate Window Displays a window where individual lines of code can be
executed and variables evaluated.

Watch Window

Displays the value of each expression that is added to a
window.

Quick Watch

Displays the current value of the selected expression.

Call Stack

Displays all the currently loaded procedures

Debugging is done when the application is suspended (in Break Mode).
Everything loaded into memory remains in memory and can be evaluated. A
program enters Break mode in one of the following ways

• A code statement generates a run-time error
• A breakpoint is intentionally set on a line of code
• A Stop statement is entered within the program code.

www.microsofttraining.net Tel: 0208 682 4973 Page 50
© Best STL 2009

Identifying the Value of Expressions

While debugging it is useful to find out the value of variables and expressions
while your code is executing.

VBA has the Locals Window , Immediate Window , Watch Window and Quick
Watch , described in Using Debugging Tools on the previous page, which can
be used to find the values of expressions

Another quick way of finding out the value of variables and expressions is the
Auto Data Tip which displays the value of the expression where the mouse is
pointing.

Setting Breakpoints

Setting breakpoints allows you to identify the location where you want your
program to enter into break mode. The program runs to the line of code and
stops. The code window displays and the line of code where the break point is
set is highlighted.

When the code is halted, the value of a variable or expression can be checked
by holding the mouse pointer over the expression or in the immediate window.

To set a breakpoint open the code window and select the desired procedure:

• Position the insert point
on the desired line of
code

• Set the breakpoint by
clicking Toggle
Breakpoint on the
Debug toolbar

OR

• Open the Debug menu
and select Toggle
Breakpoint

OR

• Click in the grey area to
the left of the line of code

www.microsofttraining.net Tel: 0208 682 4973 Page 51
© Best STL 2009

How to Step Through Code

The step tools allow you to step one line at a time through the code to see
exactly which statements in your procedure are being executed.

Step Into

F8 Executes code one statement at a time. If
the statement calls another procedure
execution steps into the called procedure
and continues to execute one step at a
time.

Step Over

Shift + F8 Executes code one statement at a time. If
the statement calls another procedure the
procedure is executed without pausing.

Step Out

Ctrl + Shift +
F8

Executes the remaining lines of a
procedure without pausing.

Run To Cursor Ctrl + F8 Runs from the current statement to the
location of the cursor in the Code window if
you are stepping through code.

Set next
Statement

Ctrl + F9 Runs the statement of your choice rather
than the next statement.

Call Stack

Ctrl + L Displays all the currently active procedures
in the application that have started but are
not completed.

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 52
© Best STL 2009

Working with Break Mode during Run Mode

During code execution the program can enter into Break Mode either
intentionally or because of a run-time error. When a run-time error occurs a
message appears that describes the error.

Click the Debug button to display the code window with the offending line
highlighted.

If during the program execution you need to intervene, for example it’s stuck in
an endless loop, you can do so by pressing Ctrl + Break or the Break button in
the Visual Basic Editor .

That action will suspend the program execution and produce the following
message:

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 53
© Best STL 2009

Unit 6 Handling Errors
Handling errors is another aspect of writing good code. VBA allows you to enter
instructions into a procedure that directs the program in case of an error.

Successfully debugging code is more of an art than a science. The best results
come from writing understandable and maintainable code and using the
available debugging tools. When it comes to successful debugging, there is no
substitute for patience, diligence, and a willingness to test relentlessly, using all
the tools at your disposal.

Writing good error handlers is a matter of anticipating problems or conditions
that are beyond your immediate control and that will prevent your code from
executing correctly at run time. Writing a good error handler should be an
integral part of the planning and design of a good procedure. It requires a
thorough understanding of how the procedure works and how the procedure fits
into the overall application. And, writing good procedures is an essential part of
building solid Microsoft Office solutions.

Good error handling should keep the program from terminating when an error
occurs.

Defining VBA's Error Trapping Options

The error trapping mechanism can be turned on, off or otherwise modified while
developing a project.

To set the Error Handling options:
• Open the Tools menu
• Select Options

The Options dialog box appears.

www.microsofttraining.net Tel: 0208 682 4973 Page 54
© Best STL 2009

The Error Trapping options are explained below:

Break on
All Errors

Causes program to enter Break mode and display
an error message regardless of whether you have
written code to handle the error.

This option turns the error handling mechanism off
and should be used for debugging only

Break in
Class Module

Causes program to enter Break mode and display
an error message when an unhandled error occurs
within a procedure of a class module such as a
User Form.

If the Debug button is clicked in the error message
window, the Code window will display the line of
code that generated the error highlighted. Should
be used for debugging only.

Break on
Unhandleded Errors

Causes the program to enter Break mode and
display a message when an unhandled error
occurs.

This is the setting that should be selected
before distributing your application.

For a list of trappable errors in Excel search Help for Trappable Errors
Constants while in the Visual Basic Editor.

A list of the error numbers and their descriptions appears.

Capturing Errors with the On Error Statement

In a procedure, you enable an error trap with an On Error statement. If an error
is generated after this statement in encountered, the Error handler takes over
and passes control to what the On Error statement specifies.

The Error-Handling syntax is as follows:

On Error < branch instruction >

On Error GoTo ErrorHandler

On Error Resume Next

www.microsofttraining.net Tel: 0208 682 4973 Page 55
© Best STL 2009

Once a On Error statement has trapped an error, the error needs to be handled.
Below are the 3 basic styles that VBA uses for handling errors:

Write an Error handler

This uses the On Error GoTo statement. It
would include statements to handle one or more
errors for the procedure.

Ignore the Error If the error is inconsequential, use the On Error
Resume Next statement to both trap and
handle the error. The program continues on the
next line of code.

Use in-line error handling Use the On Error Resume Next statement to
trap the error. Then enter code to check for
errors immediately following any statements
expected to generate errors.

On Error GoTo 0
This statement disables the error-handling for the procedure at least until
another On Error statement is encountered. This is an alternative to changing
the Error Trapping settings to Break on All Errors as it only affects the
procedure it is in. Once the issue is resolved remove the statement from the
procedure.

Error trapping is defined on a procedure-by-procedure basis. VBA does not
allow you to specify a global error trap.

Determining the Err Object

When an error occurs, VBA uses the Err object to store information about that
error. The Err object can only contain information about one error at a time

The properties of the Err object contain information such as the Error Number ,
Description , and Source .

The Err object's Raise method is used to generate errors, and its Clear method
is used to remove any existing error information.

Using the Raise methods to force an error can help in error testing routines.

The following statement generates a “Division By Zero” error message:

Err.Raise 11

www.microsofttraining.net Tel: 0208 682 4973 Page 56
© Best STL 2009

Coding an Error-Handling Routine

The On Error Go To statement is used to branch to a block of code within the
same procedure which handles errors. This block is known as the error-
handling routine and is identified by a line label.

The routine is always stored at the bottom of the procedure, preceded by an
Exit statement that prevents the routine from being executed unless an error
has occurred.

Common line labels used to identify an Error-handling routine are
“ErrorHandler” and “EH”. You can use one of these or create a personal one to
handle all your error-handling routines.

Line labels only have to be unique within the procedure.

The benefit of using this style is that all the error-handling logic is at the bottom
rather than being mixed up with the main logic of the procedure making the
procedure easier to read and understand.

The example below illustrates a error-handling routine for a sub procedure:

Sub RunFormula()

On Error GoTo ErrorHandler

Dim A As Double
Dim B As Double

A = InputBox("Type in the value for A")
B = InputBox("Type in the value for B")

MsgBox A / B

Exit Sub

ErrorHandler:

If Err.Number = 11 Then
 B = InputBox(Err.Description & " is not allowed. Enter a non-zero number.")
 Resume
Else
 MsgBox "Unexpected Error. Type " & Err.Description
End If

End Sub

www.microsofttraining.net Tel: 0208 682 4973 Page 57
© Best STL 2009

When an execution has passed into an error routine the following list shows
how to specify which code to be used next:

Resume Execution continues on the same line within the
procedure that caused the error.

Resume Next Execution continues on the line within the
procedure that follows the line that caused the
error.

Resume < Line Label > Execution continues on the line identified by the
line label. This usually points to another routine
within the procedure that performs a “clean-up”
be releasing variables and deleting temporary
files.

End Sub / End Function Used to exit the procedure normally by reaching
the End Sub or end Function command

Exit Sub / Exit Function Immediately exits the procedure in which it
appears. Execution continues with the statement
following the statement that called the procedure.

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 58
© Best STL 2009

Using Inline Error Handling

Using this method you place the code to handle errors directly into the body of
the procedure, rather than placing it at the end of the routine.

To do this, place the On Error Resume Next statement into the procedure.
The error handling code is then placed immediately after the line where the
code is expected to cause error. This method may be simpler to use in very
long procedures where two or more errors are anticipated.

Sub ProcFileOpen()

On Error Resume Next

Open "C:\My Documents\Sales2006.xls" For Input As #1
Select Case Err
 Case 53
 MsgBox "File not found: C:\My Documents\Sales2006.xls"
 Case 55
 MsgBox "File in use: C:\My Documents\Sales2006.xls"
 Case Else
 MsgBox "Err Number: " & Err.Number & vbLf & _
 "Error Descriptoion: " & Err.Description
End Select

Err.Clear

End Sub

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 59
© Best STL 2009

Unit 7 Managing Program Execution

Defining Control-Of-Flow structures

When a procedure runs, the code executes from top to bottom in the order that
it appears. Only the simplest of programs execute in this manner. Most
programs incorporate logic to control which lines of code to execute.

The Control-Of-Flow structures described below provide this logic:

Sequential

Each line of code is executed in order from top to bottom.

Unconditional
Branching

A statement that directs the flow of program execution to
another location in the program without condition. Calling a
Function , a Sub or using the GoTo statement are
examples of unconditional branching

Conditional
Branching

The code to be executed is based on the outcome of a
Boolean expression. Decision structures like If and Select
Case are used to implement conditional branching.

Looping A block of code executed repeatedly as long as a certain
condition exists. The For…Next and the Do..Loop are
examples of looping structures

Halt
Statements

Commands used to stop code execution. The Stop
command stops execution but retains variables in memory.
The End command terminates the application.

Using Boolean Expressions

A Boolean expression returns a True or False value. Many Boolean
expressions take the form of two expressions either side of a comparison
operator. If the result is true the condition is met and control is passed to the
code to be executed.

Here are some examples of Boolean expressions:

Firstname = “Alan”

UnitPrice > 1.60

OrderAmount < 500

www.microsofttraining.net Tel: 0208 682 4973 Page 60
© Best STL 2009

The following comparison operators are used in Boolean expressions:

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= Equal to

<> Not equal to

Is Compares object variables

Like Compares string expressions

When testing for more than one condition Boolean expressions can be joined
with a Logical Operator .

The following is a list of Logical Operators :

And

Each expression must be True for the condition to be true.

Or

One of the expressions must be True for the condition to be true.

Not

The expression must be False for the condition to be true.

The following are examples of multiple conditions joined by logical operator:

UnitPrice > 1.60 AND OrderAmount > 1000

DateJoined <= 2004 OR DeptName = “Sales”

A null expression will be treated as a false expression.

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 61
© Best STL 2009

Using the If...End If Decision Structures

If…End If is used to execute one or more statements depending upon a text
condition. There are four forms of the If construct.

The first contains the condition and statement to be executed in the same line:

If <condition > Then <statement >

If OrderAmount >1000 Then Discount = “Yes”

The block form is used when several statements are to be executed based on
result of the test condition:

If <condition > Then
<statement block >

End If

If Country = “England” Then

Account = “Domestic”
TransportCost = 10.00

End If

Like the If…Then structure the If…Then…Else structure passes control to the
statement block that follows the Then keyword when the condition is True and
passes control to the statement block that follows the Else keyword when the
condition is False .

If <condition > Then
<statement block >

Else
<statement block >

End If

If Country = “England” Then

Account = “Domestic”
TransportCost = 10.00

Else
Account = “Foreign”
TransportCost = 40.00

End If

www.microsofttraining.net Tel: 0208 682 4973 Page 62
© Best STL 2009

By modifying the basic structure and inserting ElseIf statements, an
If…Then…Else block that tests multiple conditions is created. The conditions
are tested in the order of appearance until a condition is true.

If a true condition is found, the statement block following the condition is
performed; execution then continues with the first line of code following the End
If statement. If no condition is true, execution will continue with the End If
statement. An optional Else clause at the end of the block will catch the cases
that do not meet any of the conditions.

If <condition_1 > Then
<statementBlock1 >

[ElseIf < condition_2 > Then
[<StatementBlock2 >]]

[ElseIf < condition_3 > Then
[<StatementBlock3>]]

[ElseIf < condition_N > Then
[<StatementBlockN >]]

End If

If Country = “England” Then

Account = “Domestic”
TransportCost = 10.00

ElseIf Country = “Wales” Then
Account = “Domestic”
TransportCost = 20.00

ElseIf Country = “Scotland” Then
Account = “Domestic”
TransportCost = 25.00

ElseIf Country = “Northern Ireland” Then
Account = “Domestic”
TransportCost = 30.00

Else
Account = “Foreign”
TransportCost = 40.00

End If

www.microsofttraining.net Tel: 0208 682 4973 Page 63
© Best STL 2009

Using the Select Case...End Select Structure

The Select Case statement is often used in place of the complex If statement.
The advantage of using this style is that your code will be more readable and
efficient. The downside is that it is only useful if compared against just one
value.

The Select Case structure contains the test expression in the first line of the
block. Each Case statement in the structure then compares against the test
expression.

The syntax of the Select Case structure, followed by two examples is shown
below:

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 64
© Best STL 2009

Select Case <TestExpression>
Case <Expression_1>

<StatementBlock1>
Case <Expression_2>

<StatementBlock2>
Case <Expression_3>

<StatementBlock3>
Case <Expression_N>

<StatementBlockN>
End Select

Select Case Country

Case “England”
Account = “Domestic”
TransportCost = 10.00

Case “Wales”
Account = “Domestic”
TransportCost = 20.00

Case “Scotland”
Account = “Domestic”
TransportCost = 25.00

Case “Northern Ireland”
Account = “Domestic”
TransportCost = 30.00

Case Else
Account = “Foreign”
TransportCost = 40.00

End Select

Select Case TestScore

Case 0 To 50
Result = “Below Average”

Case 51 To 70
Result = “Good”

Case Is > 70
Result = “Excellent”

Case Else
Result = “Irregular Test Score”

End Select

www.microsofttraining.net Tel: 0208 682 4973 Page 65
© Best STL 2009

Using the Do...Loop Structure

The Do…Loop structure controls the repetitive execution of the code based
upon a test of a condition. There are two variations of the structure: Do While
and Do Until .

The Do While structure executes the code as long as the condition is true.
The Do Until structure executes the code up to the point where the condition
becomes true or as long as the condition is false. The condition is any
expression that can be evaluated to true or false.

The Exit Do is optional and can be used to quit the Do statement and resume
execution with the statement following the Loop. Multiple Exit Do statements
can be placed anywhere within the Loop construct.

The following syntax is used to perform the statement block zero or more times:

Do While < condition >
<statement block >

[Exit Do]
Loop

Do Until < condition >

<statement block >
[Exit Do]
Loop

Do While ActiveCell.Value <> “”

ActiveCell.Value = ActiveCell.Value *1.25
ActiveCell.Offset(1).Select

Loop

To perform the statement block at least once, use one of the following:

Do
<statement block >

[Exit Do]
Loop While < condition >

Do

<statement block >
[Exit Do]
Loop Until < condition >

Do

Count = Count +1
Loop Until Count = NoStudents

www.microsofttraining.net Tel: 0208 682 4973 Page 66
© Best STL 2009

Using The For...Next Structure

The For…Next structure executes a block of statements a specific number of
times using a counter that increases or decreases values. Beginning with the
start value, the counter is increased or decreased by the increment. The default
increment is 1. Specify an increment of -1 to count backwards.

The Exit For statement is optional and can be used to quit the For construct
and resume execution with the statement following the Next .

Below is the syntax of the For…Next statement:

For <counter> = <start> To <end> [Step <increment>
<statement block >
[Exit For]

Next [<counter>]

Dim MyIndex as Integer

For MyIndex = 1 To NoRows
Cells (MyIndex,4).Select
Total = Total + Cells (NoRows,4).Value

Next MyIndex

Using the For Each...Next Structure

The For Each…Next structure is used primarily to loop through a collection of
objects. With each loop it stores a reference to a given object within the
collection to a variable. The variable can be used by the code to access the
object’s properties. By default it will loop through ALL the objects in a
collection.

The Exit For statement is optional and can be used to quit the For Each
construct and resume execution with the statement following the Next .

Below is the syntax of the For Each…Next statement:

For Each <element> in <CollectionReference>
<statement block >
[Exit For]

Next [<element>]

Dim BookVar As Workbook

For Each BookVar In Application.Workbooks

BookVar.Save
Next BookVar

www.microsofttraining.net Tel: 0208 682 4973 Page 67
© Best STL 2009

Guidelines for Use Of Control-Of-Flow Structures

Use the following as a guide in choosing the appropriate Decision structure:

Use To

If…Then Or If…Then…End If

Execute one statement based on the
result of one condition

If…Then…End If Execute a block of statements based on
the result of one condition

If…Then…Else…End If Execute 1 of 2 statement blocks based on
the result of one condition

Select Case…End Select Execute 1 of 2 or more statement blocks
based on 2 or more conditions, with all
conditions evaluated against 1 expression.

If…Then…ElseIf…End If Evaluate 1 of 2 or more statement blocks
based on 2 or more conditions, with
conditions evaluated against 2 or more
expressions.

Use the following as a guide in choosing the appropriate Looping structure:

Use To

For…Next

Repeat a statement block a specific
number of times. The number is known or
calculated at the beginning of the loop and
doesn’t change.

For…Each

Repeat a statement block for each
element in a collection or array.

For…Next Repeat a statement block while working
through a list when the number of list items
is known or is calculated beforehand.

Do…Loop Repeat a statement block while working
through a list when the number of list items
is not known or are likely to change.

Do…Loop Repeat a statement block while a condition
is met.

www.microsofttraining.net Tel: 0208 682 4973 Page 68
© Best STL 2009

Unit 8 Harnessing Forms And Controls

Defining UserForms

Dialog boxes are used in applications to interface with the user. VBA allows
you to create custom dialog boxes that can display information or retrieve
information from the user as required. These are known as UserForms or just
Forms .

A UserForm serves as a container for control objects, such as labels, command
buttons, combo boxes, etc. These controls depend on the kind of functionality
you want in the form. When a new UserForm is added to the project, the
UserForm window appears with a blank form, together with a toolbox containing
the available controls. Controls are added by dragging icons from the toolbox to
the UserForm. The new control appears on the form with 8 handles that can be
used to resize the control. The grid dots on the form help align the controls on
the form.

To add a UserForm to a project:
In the Visual Basic Editor , select the desired Project name in the Project
Explorer.

To insert a UserForm do one of the following:
• Open the Insert menu
• Select UserForm . OR

• Right-click the project name
• Select Insert and choose UserForm .

A blank user form appears together with the toolbox.
Press F7 to display the code window of the selected form and F4 to display the
Properties window.

www.microsofttraining.net Tel: 0208 682 4973 Page 69
© Best STL 2009

Utilising the Toolbox

While working on a form the toolbox is displayed but becomes hidden when
another window in the Visual Basic Editor is selected. Controls are added to
forms to build a desired interface and add functionality.

The default set of controls, from left to right, on the above toolbox are described
below:

Select Objects Makes the mouse behave as a pointer for selecting a
control on a form.

Label Creates a box for static text

Text Box Creates a box for text input or display.

Combo Box Creates the combination of a drop-down list and textbox.
The user can select an option or type the choice.

List Box Creates a scrollable list of choices

Check Box Creates a logical check box

Option Button Creates an option button that allows exclusive choice from
a set of options.

Toggle Button Creates a toggle button that when selected indicates a
Yes, True or On status.

Frame Creates a visual or functional border.

Command Button Creates a standard command button.

Tab Strip Creates a collection of tabs that can be used to display
different sets of similar information.

MultiPage Creates a collection of pages. Unlike the Tab Strip each
page can have a unique layout.

Scroll Bar Creates a tool that returns a value of for a different control
according to the position of the scroll box on the scroll bar

Spin Button Creates a tool that increments numbers.

Image Creates an area to display a graphic image.

RefEdit Displays the address of a range of cells selected on one or
more worksheets.

Double-click a toolbox icon and it remains selected allowing multiple controls to
be drawn.

www.microsofttraining.net Tel: 0208 682 4973 Page 70
© Best STL 2009

Using UserForm Properties, Events And Methods

Every UserForm has its own set of properties, events and methods. Properties
can be set in both the Properties window and through code in the Code window.

Properties
All forms share the same basic set of properties. Initially every form is the
same. As you change the form visually, in the UserForm window, you are also
changing its properties. For example if you resize a form window, you change
the Height and Width properties.

The following list describes the more commonly used properties of a UserForm:

Property Description

BackColor Sets the background colour of a form.

BorderStyle Sets the border style for the form.

Caption Sets the form’s title in the title bar.

Enabled Determines whether the form can respond to user-
generated events.

Height Sets the height of the form.

HelpCOntextID Associates a context-sensitive Help topic with a form.

MousePointer Sets the shape of the mouse pointer when the mouse
is positioned over the form.

Picture Specifies picture to display in the form.

StartUpPosition Sets where on the screen the form will be displayed.

Width Sets the width of the form.

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 71
© Best STL 2009

Events
All UserForms share a set of events they recognize and to which they respond
by executing a procedure. You create the code to execute for a form event the
same way as you create other event procedures:

• Display the code window for the form
• Select the UserForm object
• Select the event from the Procedure list.

Methods
UserForms also share methods that can be used to execute built-in procedures.
Methods are normally used to perform an action in the form.

The three most useful methods are explained below:

Show

Displays the form; can be used to load a form if not
already loaded.

Hide Hides the form without unloading it from memory.

Unload Removes the form from memory.

Use the keyword Me in the UserForm’s code module instead of its name to refer
to the active form and access its properties and methods.

Object Procedure

www.microsofttraining.net Tel: 0208 682 4973 Page 72
© Best STL 2009

Understanding Controls

A control is an object placed on a form to enable user interaction. Some
controls accept user input while others display output. Like all other objects
controls can be defined by their properties, methods and events.

Below is an example of a form containing commonly used controls:

Control properties can be viewed and assigned manually via the Properties
window. While each type of control is unique many share similar attributes.

The following list contains properties that are common among several controls:

Property Description

ControlTipText

Specifies a string to be displayed when the mouse
pointer is paused over the control

Enabled Determines if the user can access the control.

Font Sets the control text type and size.

Height Sets the height of the control

MousePointer Sets the shape of the mouse pointer when the mouse is
positioned over the object

TabIndex Determines the order in which the user tabs through the
controls on a form.

TabStop Determines whether a control can be accessed using the
tab key.

Visible Determines if a control is visible

Width Sets the width of a control.

www.microsofttraining.net Tel: 0208 682 4973 Page 73
© Best STL 2009

All controls have a default property that can be referred by simply referencing
the name of the control. In one example the Caption property is the default
property of the Label control.

This makes the two statements below equivalent:

Label1 = “Salary”
Label1.Caption = “Salary”

As with forms many controls respond to system events.

The following are the more common events that controls can detect and react
to:

Click

Occurs when the user clicks the mouse button while the
pointer is on the control

GotFocus Occurs when a control receives focus

LostFocus Occurs when a control loses focus

MouseMove Occurs when a user moves the mouse pointer over a
control.

Naming Conventions
It’s a good practice to use a prefix that identifies the control type when you
assign a name to the control.

Below is a list of several control object name prefix conventions:

Object Prefix

Check box

chk

Combo box cbo

Command button cmd

Frame fra

Image img

Label lbl

List box lst

Option button opt

Text box txt

www.microsofttraining.net Tel: 0208 682 4973 Page 74
© Best STL 2009

Setting Control Properties in the Properties Window

Each control has a set of properties that can be set in the design environment
using the Properties window. Categories for the property window vary per
object.

Frequently used categories are behaviour, font, and position.

To set Control Properties in the Properties Window:

• Display the Properties Window

• Click the Alphabetic tab to display

properties in alphabetic order OR

• Click the Categorized tab to display

properties by category

To change a property setting:

• Select the desired control in the

UserForm window or from the drop
down list in the Properties window

• Scroll to the desired property and use

the appropriate method to change the
setting in the value column.

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 75
© Best STL 2009

Using the Label Control

The Label control is used to display text on a form that cannot be modified by
the user.

It can be modified in the procedure by using the Caption property.

Below are some unique properties of the Label control:

Property Description

TextAlign

Determines the alignment of the text inside the label.

AutoSize Determines if the dimensions of the label will automatically
resize to fit the caption.

Caption Sets the displayed text of the field.

WordWrap Determines if a label expands horizontally or vertically as
text is added. Used in conjunction with the AutoSize
property.

Using the Text Box Control

The Text Box control allows the user to add or edit text. Both string and
numeric values can be stored in the Text property of the control.

Below are some important properties of the Text Box control:

Property Description

MaxLength

Specifies the maximum number of characters that can be
typed into a text box. The default is 0 which indicates no
limit.

MultiLine Indicates if a box can contain more than one line.

ScrollBars Determines if a multi-line text box has horizontal and/or
vertical scroll bars.

Text Contains the string displayed in the text box.

www.microsofttraining.net Tel: 0208 682 4973 Page 76
© Best STL 2009

Using the Command Button Control

Command buttons are used to get feedback from the user. Command buttons
are among the most important controls for initiating event procedures.

The most used event associated with the Command Button is the Click event.

Below are two unique properties of the Command button control:

Property Description

Cancel

Allows the Esc key to “click” a command button. This
property can only be set for one command button per form.

Default Allows the Enter key to “click” a command button. This
property can only be set for one command button per form.

Using the Combo Box Control

The Combo Box control allows you to display a list of items in a drop-down list
box. The user can select a choice from the list or type an entry.

The items displayed on the list can be added in code using the AddItem
method.

Below are some important properties of the Combo Box control:

Property Description

ListRows

Sets the number of rows that will display in the list.

MatchRequired Determines whether the user can enter a value that is not
on the list.

Text Returns or sets the text of the selected row on the list.

Some important methods that belong to the Combo Box are explained below:

AddItem item_name, index

Adds the specific item to the bottom of the list.
If the index number is specified after the item
name its added to that position on the table

RemoveItem index Removes the item referred to by the index
number.

Clear Clears the entire list.

www.microsofttraining.net Tel: 0208 682 4973 Page 77
© Best STL 2009

Using the Frame Control

The Frame control is used to group a set of controls either functionally or
logically within an area of a UserForm . Buttons placed within a frame are
usually related logically so setting the value of one affects the values of others
in the group.

Option buttons is a frame are mutually exclusive, w hich means when one
is set to true the others will be set to false .

Using Option Button Controls

An Option Button control displays a button that can be set to on or off. Option
buttons are typically presented within a group in which one button may be
selected at a time.

The Value property of the button indicates the on and off state.

Using Control Appearance

The UserForm toolbar provides several tools that are used to manipulate the
appearance of the controls on the form.

Many of the tools on the UserForm toolbar require the user to select multiple
controls. To do this:

• Click the first control
• Hold down the Shift key
• Click any additional controls

Controls will be aligned or sized according to the first control selected. The first
control selected is identified by its white selection handles.

Below is an illustration of a UserForm with multiple controls selected:

www.microsofttraining.net Tel: 0208 682 4973 Page 78
© Best STL 2009

Below is an illustration of the UserForm toolbar together with the options for
Align , Centre and Make Same Size .

Setting the Tab Order

The tab order is the order by which pressing the Tab key moves focus from
control to control on the form. While the form is being built the tab order is
determined by the order in which you place the controls on the form. If the
controls are rearranged you may nee to manually reset the tab order. To set
the tab order:

• View the desired form in
the UserForm window

• Open the View menu

• Choose Tab Order

• Select the desired control
from the list

• Click Move Up to move the
control up the list

• Click Move Down to move
the control down the list

Although Labels are listed on the Tab Order dialog box, they are not included
in the tab order.

Bring to front

Make Same size

Centre Zoom

Align

Send to back

Group

Ungroup

www.microsofttraining.net Tel: 0208 682 4973 Page 79
© Best STL 2009

Filling a Control

A list box or combo box control placed on the form is not functional until the
data that will appear on the list is added.

This is done by writing code in the sub procedure associated with the Initialize
event. This triggers when the form is loaded. The AddItem method is used to
specify the text that appears in the list.

The code below shows items added to a combo box named cboCourses:

With cboCourses

.AddItem “Excel”

.AddItem “Word”

.AddItem “PowerPoint”
End With

Adding Code to Controls

As seen, forms and their controls are capable of responding to various events.
Adding code to forms and control events are accomplished the same way as
adding code to events of other objects.

How to Launch a Form in Code

The Show method of the form object is used to launch a form within a
procedure.

Creating a procedure to launch a form enables you to launch a form from a
toolbar, or menu as well as from an event such as opening a workbook.

Below is the syntax used to launch a form:

FormName.Show

frmNewData.Show

www.microsofttraining.net Tel: 0208 682 4973 Page 80
© Best STL 2009

Unit 9 Using the PivotTable Object

Understanding PivotTables

A pivot table is a table that can be used to summarize data from a worksheet or
an external source such as a database.

A Pivot table can only be created using the Pivot table wizard.

Creating A PivotTable

The wizard makes the creation of the pivot table quite easy. By following a
series of prompts the wizard takes over and creates the pivot table for you. To
do this:

• Pull down the Data menu
• Select Pivot Table and Pivot Chart Report…

The PivotTable and PivotChart Wizard – Step 1 of 3 dialog box appears.

• Select Where the

data is that you
want to analyze

• Select What kind of
report you want to
create

• Click Next .

The PivotTable and PivotChart Wizard – Step 2 of 3 dialog box appears.

• The selected range
appears in the
Range window

• Change the range if
needed

• Click Next .

www.microsofttraining.net Tel: 0208 682 4973 Page 81
© Best STL 2009

The PivotTable and PivotChart Wizard – Step 3 of 3 dialog box appears.

• Select Where do you
want to put the Pivot
Table

• Click Finish

• Drag the field buttons
to the desired page,
row, column and data
fields.

Using the PivotTable Wizard Method

The PivotTable Wizard method of the Worksheet object can be used to create
a pivot table in code without displaying the wizard.

The PivotTable Wizard method has many arguments. The main ones are
described below:

Argument Definition
SourceType The source of the PivotTable data. The SourceData

argument must also be specified when using this.

SourceData A range object that specifies the data for the
PivotTable.

TableDestination A range object indicating where the table will be
placed.

TableName The name by which the table can be referred.

An example of the PivotTable Wizard method is shown below:

Sub MakePivot ()

Dim DataRange As Range
Dim Destination As Range
Dim PvtTable As PivotTable

Set Destination = Worksheets("Sales Summary").Range("A12")
Set DataRange = Range("A9", Range("J9").End(xlDown))

ActiveSheet.PivotTableWizard SourceType:=xlDatabase, _
SourceData:=DataRange, TableDestination:=Destination, TableName:="SalesInfo"

End Sub

This code runs the PivotTable wizard, capturing the data in the current
worksheet then placing a pivot table in the worksheet called “Sales Summary”.
In this instance the PivotTable contains no data, because the row, column and
data fields haven’t been assigned.

www.microsofttraining.net Tel: 0208 682 4973 Page 82
© Best STL 2009

Using PivotFields

Once a PivotTable is created pivot fields must be assigned. The PivotFields
collection is a member of the PivotTable object containing the data in the data
source with each Pivot Field getting its name from the column header.
PivotFields can be set to page, row, column and data fields in the PivotTable.

In the Sales – April 2004 the fields are: Sales Date, Make, Model, Type, Colour,
Year, VIN Number, Dealer Price, Selling Price, Salesperson.

The table below lists the PivotTable destinations for PivotFields.

Destination Constant

Row Field

xlRowField

Column Field xlColumnField

Page Field xlPageField

Data Field xlDataField

To Hide A Field xlHidden

The following syntax shows how a PivotField is defined by setting its Orientation
property to the desired destination column:

.PivotTables(Index).PivotFields(Index).Orientation = Destination

.PivotTables(“SalesInfo”).PivotFields(“Salesperson”).Orientation = xlPageField

PivotTables(“SalesInfo”).PivotFields(“Colour”).Orientation = xlRowField

To optimize the setting of the Pivot Table orientation use the With Statement:

Set PvtTable = Sheets(“Sales Summary”).PivotTables(“SalesInfo”)

With PvtTable

 .PivotFields(“Salesperson”).Orientation = xlPageField
 .PivotFields(“Year”).Orientation = xlRowField
 .PivotFields(“Make”).Orientation = xlColumnField
 .PivotFields(“Selling Price”).Orientation = xlDataField

End With

www.microsofttraining.net Tel: 0208 682 4973 Page 83
© Best STL 2009

Notes

www.microsofttraining.net Tel: 0208 682 4973 Page 84
© Best STL 2009

Excel VBA – Quick Reference Guide

Subject Examples / Notes

Building
Blocks

VBA Terminology Objects (eg Worksheet)
Property (eg Name)
Method (eg Close)
Procedure

Container Objects (eg Workbook)
Collection Objects (eg Worksheets)

Type “Microsoft Excel Objects” in VBE Help
to get the Excel object Hierarchy

 Visual Basic Editor
(VBE)

The Projects window
The Properties window
The Code window
Alt-F11 – back and forth between VBE and
Excel

 Changing object
properties

Using the Properties window
OR
Using code: Object.property = newvalue

Eg: ActiveSheet.Name = “New Sheet”

 Using methods Syntax: object.method

Eg: ActiveCell.Select
 ActiveSheet.Protect

 Coding to react to
events

In the code window, select the object from
the top left drop down menu and the Event
from the top right drop down menu Eg:

Private Sub Worksheet_Activate()

End Sub

 Msgbox Msgbox(“This is my message”)

vbCrLf (Carriage return and Linefeed)

Allows text displayed on a MsgBox to appear
on multiple lines

 Adding Buttons To toolbar (right click on toolbar and choose
Customise)
To worksheet (display Forms or Visual Basic
toolbars)

 Object Browser In VBE, select View / Object Browser to
explore the ‘library’ of VBA code

www.microsofttraining.net Tel: 0208 682 4973 Page 85
© Best STL 2009

Subject Examples / Notes
Dealing
with Data

Data Types Byte, Boolean, Integer, Long, Single,
Double, String, Date, Currency. .Also Variant
and Object

Type “Data Type Summary” in VBE Help to
get the sizes and ranges for all data types

 Variables Declaring variables:
 Implicitly by just using them
 Explicitly (Dim variable as type)

Initialising (i.e. giving a variable a value):
 UserName = “My Name”
 Deptnumber = 234

 Scope Procedure Level scope:

Private Sub Worksheet_Activate()
Dim MyVariable As String

 MyVariable = "Jonathan"

End Sub

Module Level scope:

Option Explicit
Dim MyVariable As String
Private Sub Worksheet_Activate()

 MyVariable = "Jonathan"

End Sub

Public scope:

Option Explicit
Public MyVariable As String
Private Sub Worksheet_Activate()

 MyVariable = "Jonathan"

End Sub

 Modules Insert menu to insert new module

 Procedures Add menu to add new procedure, or type it:

Sub MyProceture

End Sub

 Calling Procedures Call MyProcedure

www.microsofttraining.net Tel: 0208 682 4973 Page 86
© Best STL 2009

Subject Examples / Notes
Controlling
Program
Flow

Decision Structures If X = Y Then

Elseif X = Z Then

Else

End If

 Select Case username

 Case “Liz”

 Case “Jonathan”

End Select

 Loop Structures Fixed Iterations

For ThisCount = 1 to 10

Next ThisCount

 Variable Iterations

 For Each SheetVar In Worksheets
 (for Collections)

 Next

 Do While / Until X = Y

 Loop

www.microsofttraining.net Tel: 0208 682 4973 Page 87
© Best STL 2009

Subject Examples / Notes
More User
Interaction

Creating a Custom
User Form

In VBE, select Insert and UserForm

 Adding Controls Use the control toolbox

 Naming Discipline With Forms and Buttons and other
controls…

Change the name (use the Properties
window) – eg:
 frmMainCommands
 txtUserName
 cmdCloseButton

 Adding code to
forms/controls

Double-click on the object

Refer to objects in your code, eg:

 txtUserName.Value = “Some Text”

 Responding to
Events

In Code Window for forms, use top left
drop down menu to select a control, and
top right drop down menu shows events

Eg:

 Private Sub
cmdEnterName_Click()

Range("E1").Value = txtUserName

End Sub

Or

 Private Sub
 txtUserName_AfterUpdate()

If txtName.Value>11 And
txtName.Value<15 Then

 Exit Sub

Else
 MsgBox ("Not a valid Dept
number")
 txtUserName.Value = ""

End If
End Sub

www.microsofttraining.net Tel: 0208 682 4973 Page 88
© Best STL 2009

Subject Examples / Notes
Debugging
and
Handling
Errors

Types of Error Compile Time

Run Time

Logical

Type “Trappable Errors” in VBE Help to
get the list of all trappable errors and
their descriptions

 Debugging Tools On the Debug menu:

 Breakpoint

On the View menu:

 Locals Window (all variables)

 Watch Window (your choice
of variables)

 Immediate Window

 On Error On Error Goto Label

Label: (must be left justified & with
 colon)

On Error Resume Next

www.microsofttraining.net Tel: 0208 682 4973 Page 89
© Best STL 2009

Subject Examples / Notes
Extras Line

continuation
Workbooks.Open Filename:= _
 "c:\MyDocuments\Excel
VBA\Courses2005.xls"

 MsgBox
buttons

Resp = MsgBox(“Do you want to continue?”, _
vbYesNoCancel)

If Resp = 6 then
 Msgbox(“You hit ‘Yes’ didn’t you?”)
Elseif Resp = 7 then
 Msgbox(“You hit ‘No’ didn’t you?”)
Elseif Resp = 2 then
 Msgbox(“You hit ‘Cancel’ didn’t you?”)
End If

Type “VB Constants” in VBE Help to view the
selection of VB Constants available

 Breaking Out Press Ctrl-Break keys to interrupt code manually
(or break out of an unending loop)

 Stop Alternative to Breakpoint

Sub Import()
 Stop
End Sub

 Other useful
code

Application.Dialogs(xlDialogOpen).Show

ActiveWindow.ActivateNext

Stop Screen Flickering

Running VBA code may cause the screen to
flicker. To switch off the screen until the program
is run enter the following code line:

Application.ScreenUpdating = False

Screen comes on automatically on completion of
the program.

To Save a Workbook and close an Application

ActiveWorkbook.Save

ActiveWorkbook.SaveAs “Employees.xls” (Save
Workbook with different name)

Application.Quit (Quit the application. Code can
be used in all Office applications

